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Displacement control crack-growth instability in 
an elastic-softening material 
Part III Genera/analysis for a small softening zone 
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Manchester University-UMIST Materials Science Centre, Grosvenor Street, Manchester M 1 7HS, 
UK, and AEA Technology, Risley, Warrington, WA3 6AT, UK 

The paper formulates a general criterion for the displacement control instability of a crack in an 
elastic-softening solid, with attention being focused on the situation where the softening zone 
size is small in relation to the solid's characteristic dimension. The instability criterion is expressed 
in terms of the material's softening behaviour and the solid's geometrical parameters. 

1. I n t r o d u c t i o n  
Elastic-softening materials, such as for example con- 
crete, cement and fibre-reinforced brittle ceramics, are 
characterized by a behaviour such that when a pre- 
cracked solid is progressively loaded, the material in 
the vicinity of the crack tip fractures and the crack 
extends. Behind the propagating crack tip, there 
is a zone of partially fractured material and the 
unfractured material elements within this zone exert a 
restraining stress between the crack faces. The effect 
of these elements can be averaged to give a restraining 
stress (p) versus relative displacement (v) behaviour for 
the crack faces, i.e. a p-v softening law. The stress has 
a finite value Pc at the crack tip and decreases as the 
relative displacement increases. When the opening at 
the trailing edge of the softening zone, i.e. the initial 
crack tip position, attains a critical value 8c, the 
restraining stress p becomes zero and the softening 
zone is then said to be fully developed. 

Carpinteri [1-3] has focused attention on the 
global response of a cracked elastic-softening solid 
when it is subjected to displacement control loading, 
giving particular consideration to the behaviour of an 
edge-cracked solid that is subjected to three-point 
bending deformation; he examined [1, 2] the behavi- 
our of a concrete-type material whose fully developed 
softening zone size was very large. By analysing 
a range of solid dimensions where the solid width, 
length and crack depth were scaled proportionally, 
Carpinterishowed that displacement control crack- 
growth instability was favoured by large dimensions, 
and also by a small crack depth/solid width ratio; he 
referred [1] to experimental results which support the 
theoretical predictions. In Part I of this series of 
papers [4], the author has extended Carpinteri's study 
of the bend configuration to the case where the soften- 
ing zone is very small in comparison with other char- 
acteristic dimensions of the configuration. Indeed the 
author assumed that the softening zone size was infin- 
itesimally small, and consequently he performed 
a simple linear elastic analysis, assuming that the 
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crack extension condition could be viewed in terms of 
the stress intensity factor K being equal to Kc, 
a measure of the fracture resistance due to the re- 
straining effect of the material within the softening 
zone. He showed that the criterion for a displacement 
control crack-growth instability can be expressed in 
the form a/W<g(L/W) where a = c r a c k  depth, 
W = beam width, L = beam length and g(L/W) is an 
increasing function of L/W. The criterion is therefore 
independent of material properties (i.e. Kc), and de- 
pends only on geometrical parameters through the 
ratios a/W and L/W, though not on the magnitudes of 
the dimensions themselves. This contrasts with 
Carpinteri's results [1, 2] for a material with a large 
softening zone, which showed that a displacement 
control crack-growth instability was favoured by large 
dimensions. In Part II [5], the author analysed the 
model of a solid containing two symmetrically situ- 
ated deep cracks and with tensile loading of the re- 
maining ligament. With this model, for the special case 
where the stress retains a constant value Pc within the 
softening zone, the behaviour of materials having 
large and small softening zones can be considered 
within the framework of the same relatively simple 
analytical procedure. The analysis defined the condi- 
tion for a displacement control crack-growth instabil- 
ity, the condition being expressed in terms of the 
material's softening zone characteristics (Pc and 8c) 
and the solid's geometrical parameters; the results 
were, in general, consistent with those obtained 
[1, 2, 4] for the bend configuration. 

As part of the continuing effort in this area, this 
paper develops a small-zone analysis which is applic- 
able to a situation where the softening zone is not 
infinitesimally small as has been assumed in Part I [4], 
but instead is a small fraction of a solid's characteristic 
dimension. The results of the general analysis are 
applicable to any configuration, and is conducted in 
the context of the importance of the problem. Many 
engineering structures are subjected to displacement 
control loading, and if there is an instability then the 
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load will immediately drop. Though there may be 
a stability on the lower portion of the load-displace- 
ment curve after the load drop, according to the re- 
sults of a static analysis, the energy associated with the 
load reduction may well lead to catastrophic dynamic 
failure of the structure. This possibility is the motiva- 
tion for research in this particular area of materials 
engineering. 

2. General small,zone analysis 
Assume that a solid of thickness B deforms under 
Mode I plane strain conditions, the solid being sub- 
jected to a displacement A which generates a load P. If 
the solid is linear elastic, 6 and P are related by an 
expression of the form 

A = C M P  

where CM is a compliance furation which is dependent 
on the solid's geometrical parameters and in particu- 
lar the crack size a. CM is related to the stress intensity 
K due to the applied loading P by the standard rela- 
tion 

dCM 2BK 2 2H 2 

da Eo P2 EoB 

if K is expressed in the form K = HP/B where H is 
a function of the crack size; Eo = El(1 - o 2) where E is 
Young's modulus and u is Poisson's ratio. 

Now as the loading is applied to an elastic-softening 
solid, the material fractures at the crack tip at a n  
infinitesimally small K value (if the matrix fracture 
resistance is ignored), and as the loading is progress- 
ively increased the crack extends, leaving in its wake 
a softening zone. It will be assumed that the stress is 
constant within the softening zone and has a value pc, 
this stress being operative until the opening v at the 
trailing edge of the softening zone, i.e. the initial crack 
tip position, attains a critical value ~ when the 
restraining stress abruptly falls to zero; the softening 
zone is then said to be fully developed. Thereafter, the 
crack continues to extend along with a fully developed 
softening zone, there being a constant opening 5r at 
the trailing edge of the softening zone. We are there- 
fore concerned with the instability of a crack growing 
along with its fully developed softening zone, and to 
quantify this problem it will be assumed that the crack 
length a is measured to the trailing edge of the fully 
developed zone, and not to the leading edge. Since the 
zone is assumed to be small in comparison with the 
solid's characteristic dimension, the problem can be 
considered in terms of an effective crack length, which 
is given by Irwin's method [-6] for modifying the crack 
length by accounting for the non-linearity within the 
softening zone. Thus the load-point displacement 
A can now be related to the load P by an expression 
with the form of Equation 1 but with CM expressed in 
terms of an effective crack length, i.e. 

A = C M ( a E F F ) P  

where the effective crack length aEF F is related to the 
actual crack length by Irwin's relation [6] 

a E F  F ~ 15/ -1- a e 
(4) 

E K  2 

aEF F = a + 24p~ 

The second term ae is the distance from the crack tip 
to the effective crack tip, and its value [7] (see Equa- 
tion 4) is appropriate to the Dugdale-Bilby Cottrell- 
Swinden model [8, 9] where there is a constant stress 
(p~) zone at a crack tip. In Equation 4, K is the crack 
tip stress intensity determined as if the material is 
linear elastic, i.e. it is equal to HP/B with H and CM 
being related via Equation 2. Now the magnitude of 
the J integral [10], according to the effective crack 
procedure, is given by the expression 

1 2 
(1) J = J(aEFF) = ~0[K(aEFF)] (S) 

which on expansion to the first two terms leads to the 
result 

J - Eo B2 + 12Eop~B 4 d~a (6) 

For a fully developed softening zone where J = J~c = 
pr162 it follows that 

(2) pzH2 np4H 3 ( d H )  
JIc = p~8r - EoB~ + 12Eop2B, d~a (7) 

Expansion of Equation 3, again to the first two terms, 
coupled with the use of Equation 4, gives the relation 

nP3H 2 (dCM'] 
A = PCM + ~ \ - d a ~ a j  (8) 

Equation 2 allows Equations 7 and 8 to be written 
respectively in the forms 

Jlc p2C~I rtE~ 
- 2B + 96pZB 2 C~C~ (9) 

nEoP 3 
A = PCM + 48--~r (10) 

where the primes refer to derivatives with respect to 
crack length. Differentiating Equations 9 and 10 gives 
the expressions 

( 2 , ,  0 = 2PC~gP + P CMga) 

3 ! tt hE~ {4P CMCMSP + P4[(C~)2 
+ 96p2B2 

+ C~C~]Sa} (11) 

~ A  = C M S P  + PC~ga 

nEo 3 , ,t + ~ [ 3 p 2 ( c ~ ) 2 6 P  + 2P CMCM~a] (12) 

Equations 11 and 12, by elimination of 6a, show that 
to the first two terms in P 

6A 2(C~)2 xE~ (1 2C~C'~ 
6--fi = CM C~ 16p2B \ 3(C~) 2 J 

(3) (13) 
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For there to be a displacement control crack-growth 
instability upon the attainment of a fully developed 
softening zone, dA/dP should be negative. Equa- 
tion 13 thus shows that the instability criterion (to the 
first two terms in P) is 

2(CM)2 nE~ {1 2C~C~) 
CM C'~ ~ \ 3(C~) z/] > 0 

(14) 

Since Equation 9 shows that p2C~/2B is equal to 
Jic = pr as a first approximation, it follows for 
a positive geometry where the function H increases 
with crack length (see Equation 2) that the instability 
criterion (Relation 14) can be written in the form 

'( CM 2(CM)2 rcEoS~CM 1 > 0 (15) 
C~ 8p~ 3(C~) z/} 

and since the effective size (a~o~) of a fully developed 
softening zone associated with a semi-infinite crack in 
a remotely loaded infinite solid is given by the expres- 
sion [7] 

~EoS~ 
a,~o = (16) 

24p, 

the instability criterion can be written in the form 

2C~C'~ 
C M 2(Cs a ~  3 > 0 (17) 

c~4 (c;~) ~ ] 

Inspection of this relation shows how the softening 
behaviour of the material (i.e. the magnitude of the 
parameter a~o~) enters into the instability criterion 
with a small-zone analysis. Of course, in the special 
situation where the softening zone is infinitesimally 
small, the second term on the left-hand side of the 
inequality (Relation 17) disappears and the instability 
criterion then simplifies to that obtained via the ana- 
lysis in Part I [4], i.e. 

2(C~) 2 
CM - -  > 0 (18) 

c~i 

and in this case, as indicated in section 1, the instabil- 
ity criterion does not involve the material properties, 
but only the geometrical parameters of the solid. 

Before concluding this section, it should perhaps be 
pointed out that the preceding analysis has been with 
regard to a situation where there is a single crack tip, 
as for example with the compact tension specimen or 
bend specimen geometrical configuration. For a sym- 
metric loading situation where extension of a crack of 
length 2a occurs simultaneously at two tips, as for 
example with the centre-cracked tension or double 
edge notch tension configuration, though the factor 2 
in Equation 2 is replaced by a factor 4, it is readily seen 
that the instability criterion is still of the form of 
Relation 17, but with the primes now referring to 
derivatives with respect to the half crack length a. 

3. Special case of double edge notch 
tension conf igurat ion 

Consider the model (Fig. 1) of a solid of width 2h, 
height D and thickness B in the direction of the figure 
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Figure 1 Model of the double edge notch tension configuration. 

normal. The solid contains two symmetrically situated 
deep cracks, and is subjected to a displacement A at 
a point along the axis which bisects the ligament 
which is of initial width 2b, this displacement being 
associated with a load P. Softening zones develop at 
each crack tip and the concern is with regard to the 
criterion for a displacement control crack-growth 
instability when the zones are fully developed, for the 
case where the fully 'developed softening zone size is 
small in comparison with the solid's characteristic 
dimension, i.e. b which is ,~ h and is ,~ D. For this 
configuration, the compliance CM relating A and P is 

I~__~ 4 f 2 h \ l  1 
CM = + ~ l n ( ~ ) J B ~ o  (19) 

and it immediately follows from Relations 17 and 19 
that the instability criterion is 

O -/--/41n[2h'~ 8 4 a ~  
- -  - - + > 0 ( 2 0 )  
2h + rc \rob] ~ 

with a,~ being given by Equation 16. 
Now, as indicated in section 1, this particular model 

has been analysed in Part II [5] for the general case 
where the softening zone size is not necessarily small. 
It was there shown that the criterion for a displace- 
ment control crack-growth instability associated with 
the full development Of a softening zone is 

reD (n2~) 41n(1 -- L)ln(1 + k) 
4h + 21n > #()~) = ln(1 7.) + ln(1 + L) 

(21) 

where Z = P/2bBp~ and with the condition for the full 
development of a softening zone being 

4p~b 
6~ - [0 + )~)ln(1 + ;~) + (1 - L)ln(1 - ;~)] 

rtE o 
(22) 



Equations 21 and 22 are applicable to the general 
situation where a softening zone is fully developed 
prior to the softening zones completely traversing the 
ligament, i.e. for all ~ < 1. However, for the case where 
the softening zone size is small in comparison with the 
ligament width, Equations 21 and 22 show that 
the displacement control crack-growth instability 
criterion simplifies to Relation 20. There is therefore 
accord between this paper's general small-zone theory 
predictions and those arising from the specific analysis 
in Part II [5]. 

4. Special case of bending of a small 
l igament 

Consider the model (Fig. 2) of a rectangular beam of 
length L, width W and thickness B in the direction of 
the figure normal, containing an edge crack with 
depth a at the beam mid-section; b = W - a  is the 
remaining ligament width. The ends of the beam are 
subjected to a relative rotation 0 which is associated 
with a moment M. For the special case where the 
remaining ligament width b is small in comparison 
with W and L, the relation between 0 and M for the 
linear elastic situation is 

( 1 2 L  15.8 \ 
0 = CMM = \EoBW3 + ~ ) M  (23) 

this relation being analogous to Equation 1 for 
the corresponding applied displacement situation. 
The small-zone displacement control crack-growth 
instability criterion is still Relation 17 with C~ being 
given by Equation 23. It is therefore 

L We 0.88aeoo(wZ~ 
0.44 ~ > 0 (24) W b \ b e /  

with a,~ being given by Equation 16. Inspection of 
this relation again shows how the softening behaviour 
of the material, through the magnitude of the para- 
meter aeoo, enters into the instability criterion with 
a small-zone analysis. Of course, for the special situ- 
ation where the softening zone is infinitesimally small, 
the last term on the left-hand side of the inequality 
(Relation 24) disappears and the instability criterion 
simplifies to that obtained in Part I [4], namely 

L W e 
- -  W > 0.44 b~ (25) 

and in this case the instability criterion does not in- 

0/2 0/2 

( L > 

Figure 2 Model of the bend specimen configuration. 

volve the material properties, but only the geometrical 
parameters of the solid. Interestingly; a comparison of 
Relations 20 and 24 for respectively the tension and 
bending situation shows that an increase in the para- 
meter ae~ is conducive to instability in the tensile case, 
but is conducive to stability in the bending situation. 
This difference is a consequence of the sign of the term 
involving ae~o in the general instability criterion (Rela- 
tion 17) being different for the two cases. 

5. Special case of centre-cracked 
tension panel 

Consider the model (Fig. 3) of a solid of width 2h, 
height D and thickness B in the direction of the figure 
normal. The solid contains a centrally situated crack 
of length 2a, and is subjected to a displacement A at 
a point along the central axis, this displacement being 
associated with a load P. Softening zones develop at 
each crack tip and the concern is with regard to the 
criterion for a displacement control crack-growth in- 
stability when the zones are fully developed, for the 
case where the fully developed softening zone size is 
small in comparison with the solid's characteristic 
dimension. It will furthermore be assumed that the 
crack size 2a is small in comparison with both the 
panel width 2h and height D. The model can then be 
viewed as approximately simulating the behaviour of 
an edge crack of depth a in a wide tension panel. With 
the preceding assumptions, the compliance CM relat- 
ing A and P may be written in the form 

(~--~ rta2~ 1 
CM = + ~ J  E-oB (26) 

and it immediately follows from Relations 17 and 26 
that the instability criterion is 

D 3ha 2 3naeoo fa2"~ 
2h 2h 2 a ~ ) ~  > 0 (27) 
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Figure 3 Model of a centre-cracked tension panel. 
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with ae~o being given by Equation 16. Comparison of 
Relations 20 and 27 for respectively the large and 
small tensile crack situations shows that an increase in 
the parameter ar is conducive to instability in the 
large crack case, but is conducive to stability in the 
small crack case. 

6. D i s c u s s i o n  
This paper has formulated a general criterion (Rela- 
tion 17) for the displacement control instability of 
a crack in an elastic-softening solid for the case where 
the softening zone size is small in relation to the solid's 
characteristic dimension. The work is therefore an 
extension of Part I's earlier analysis [4] which was 
based on the assumption of linear elastic behaviour 
with the softening zone regarded as being infinit- 
esimally small. The general instability criterion is ex- 
pressed in terms of the solid's geometrical parameters 
through the compliance function CM appropriate for 
linear elastic behaviour, and the material's softening 
behaviour through the way in which this affects the 
parameter aeoo - the effective size of fully developed 
softening zone associated with a semi-infinite crack in 
a remotely loaded infinite solid. The theory has been 
developed in the present paper for the idealized situ- 
ation where the stress within the softening zone retains 
a constant value Pc until the crack opening attains 
a critical value 6c, when the stress in the zone falls 
abruptly to zero and the softening zone is then fully 
developed. Though the theory has been developed for 
this idealized softening behaviour, since we are dealing 
with the case where the softening zone size is small 
there is no reason to believe that the instability cri- 
terion for a general p-v softening behaviour will be 
different to that derived in this paper (i.e. Relation 17), 
except that the ae~ value will of course be different, ar 
depends on the p-v softening law [11], being in- 
fluenced by the maximum stress Pc and the maximum 
displacement 6o, and also by the precise p-v variation: 
a general conclusion [12] is that ac~ increases above 
the value given by Equation 16 as the softening be- 

comes pronounced, i.e. when the area under the p~v 
curve is ~ p~6c. 

The general conclusion that emerges from the 
present paper's small-zone analysis is that the 
criterion for displacement control crack-growth insta- 
bility involves both geometrical and material soften- 
ing parameters, but that these effects are coupled in 
a complicated manner. Thus an increase in ar is 
conducive to stability with tensile loading for a small 
crack but is conducive to instability of a deep crack; 
on the other hand an increase in ae~ is conducive to 
stability for a deep crack with bend loading. 
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